The Non-Technical AI Guide

According to McKinsey, AI will create an estimated $13 trillion of GDP growth between now and 2030. As a comparison, the GDP of the entire United States of America was around 19 trillion in 2017. Leading AI scientists, like Andrew Ng, describe AI as the fourth industrial revolution or „the new electricity“. AI is undoubtedly... Continue Reading →

Connectionist Temporal Classification

Connectionist Temporal Classification (CTC) is a valuable operation to tackle sequence problems where timing is variable, like Speech and Handwriting recognition. Without CTC, you would need an aligned dataset, which in the case of Speech Recognition, would mean that every character of a transcription, would need to be aligned to its exact location in the... Continue Reading →

Agile and Non-Agile Project Management

Software project management is the practice of planning and executing software projects. Its concepts need to be understood by every team member to ensure a smooth project flow. There are different methodologies that can be mainly divided into structured and flexible approaches. The most common approach, which gained a lot of popularity in recent years, is... Continue Reading →

The Logistic Regression Algorithm

Logistic Regression is one of the most used Machine Learning algorithms for binary classification. It is a simple Algorithm that you can use as a performance baseline, it is easy to implement and it will do well enough in many tasks. Therefore every Machine Learning engineer should be familiar with its concepts. The building block... Continue Reading →

Evaluation Metrics for Classification

Using the right evaluation metrics for your classification system is crucial. Otherwise, you could fall into the trap of thinking that your model performs well but in reality, it doesn't. In this post, you will learn why it is trickier to evaluate classifiers, why a high classification accuracy is in most cases not as desirable... Continue Reading →

Linear Algebra for Deep Learning

The concepts of Linear Algebra are crucial for understanding the theory behind Machine Learning, especially for Deep Learning. It gives you a better intuition for how algorithms really work under the hood, which enables you to make better decisions. So if you really want to be a professional in this field, you will not come around mastering some... Continue Reading →

Data Types in Statistics

Data Types are an important concept of statistics, which needs to be understood, to correctly apply statistical measurements to your data and therefore to correctly conclude certain assumptions about it. This blog post will introduce you to the different data types you need to know, to do proper exploratory data analysis (EDA) on your dataset,... Continue Reading →

Intro to Descriptive Statistics

Descriptive Statistical Analysis helps you to understand your data and is a very important part of Machine Learning. This is due to Machine Learning being all about making predictions. On the other hand, statistics is all about drawing conclusions from data, which is a necessary initial step. In this post you will learn about the most important... Continue Reading →

Website Built with

Up ↑